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Fractal — "broken, fragmented, irregular”

" | coined fractal from the Latin adjective fractus. The corresponding

Latin verb frangere means "to break" to create irregular fragments. It is
therefore sensible - and how appropriate for our need ! - that, in
addition to "fragmented" (as in fraction or refraction), fractus should

also mean "irregular”, both meanings being preserved in fragment. ?

B. Mandelbrot
The fractal Geometry of Nature, 1982
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Fractals in nature

A naturally occurring fractal is one in which it’s pattern is
found somewhere 1n nature.

A few examples where these recursive images are seen are
trees, ferns, fault patterns, river tributary networks, coastlines,
stalagmite, lightning, mountains, clouds.

Several of the examples just listed are also structures that are
mimicked in modern computer graphics.
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http://classes.yale.edu/fractals/Panorama/Nature/NatFracGallery/Gallery/Stalagmite.gif
http://classes.yale.edu/fractals/Panorama/Nature/Rivers/Norway.gif
http://classes.yale.edu/fractals/Panorama/Nature/Rivers/Waterfall1.gif

Fractal geometry: the language of nature

Euclid geometry: cold and dry
Nature: complex, irregular, fragmented

“Clouds are not spheres, mountains are not econes,
coastlines are not circles, and bark is not smooth,
nor does lightning travel in a straight line.”
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Practical measurements

There is no formula for coastlines, or defined
construction process.

The shape is the result of millions of years of
tectonic activities and never stopping
erosions, sedimentations, etc.

In practice we measure on a geographical
map.

Measurement procedure:
- Take a compass, set at a distance s (in true
units).
—  Walk the compass along the coastline.
—  Count the number of steps N.

—  Note the scale of the map. For example, if the
map is 1:1,000,000, then a compass step of
1cm corresponds to 10km. So, s=10km.

—  The coast length = sN.
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The Hong Kong coast

Apply the procedure with different s.
Results:

— The measured length increases with
decreasing s.

Retumn

Compass step s Lenqth ]

2km 43.262km

1km 52.702km

0.5km 60.598km
0.1km 69.162km i '
0.02km 87.98km @
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Notion of length

e Fractal geometry generalizes ordinary notions of length,
scale, and dimension in interesting and subtle ways.

— For length, classical example is coastline length of a given country or
border.

+ Result depends on fineness of scale used—as scale goes down, length
goes up.

* Ratio of scale to length gives rise to new notions of dimension.

— Spirals provide another excellent example countering intuition about
length.

x* Example: Smooth polygonal spiral can have finite or infinite length
depending on method of construction.

Construction Method Infinite length (az, = 1/k) Finite length (az = D.QS‘EV_l)
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Answer: A
Spiral 1 is-infinitely long but Spiral 2 isn’t.

Quarter circles of progressively decreasing radius.

S| = ma,/2
S, = ma,/2

Length =

Ifa,=1,q,09% dd ..., g,..., then length is finite (right one, g=0.95).
Ifa, =1, 1/2, 1/3, 1/4, ... 1/i,..., then length is infinite (left one).
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Euclid dimension

In Euclid geometry, dimensions of objects are
defined by integer numbers.

0 - A point

1 - A curve or line

2 - Triangles, circles or surfaces

3 - Spheres, cubes and other solids
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Length of the coastline of Britain

o=1/2, =20

-
7 - l.‘
PN,
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For a square we -have N”2 self-similar pieces for the
magnification factor of N

dimension=log(number of self-similar pieces)
/log(magnification factor)

=log(N*2)/logN=2
For a cube we have N3 self-similar pieces

dimension=log(number of self-similar pieces)
/log(magnification factor)

=log(N"3)/logN=3

Sierpinski triangle consists of three self-similar pieces
with magnification factor 2 each

dimension=log3/log2=1.58
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Dimension of a two dimensional sgaure

™

N
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Fractal dimension

Fractal dimension can be non-integers

Intuitively, we can represent the fractal
dimension as a measure of how much space
the fractal occupies.

Given a curve, we can transform it into 'n’
parts (n actually represents the number of
segments), and the whole being 's' times the
length of each of the parts. The fractal
dimension is then :

d=logn/logs
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Scaling/dimension of the von Koch curve

Scale by 3 — need four
self-similar pieces

D=log4/log3=1.26
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mathematical fractal: Konch Snowflake

Step One.
Start with a large equilateral triangle.
Step Two.
Make a Star.
Divide one side of the triangle into
three parts and remove the middle section.
2. Replace it with two lines the same
length as the section you removed.
3. Do this to all three sides of the triangle.
Repeat this process infinitely.

The snowflake has a finite area bounded
by a perimeter of infinite length!
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Definition: Self-similarity

A geometric shape that has the property of self-similarity, that is, each

part of the shape is a smaller version of the whole shape.

Examples:
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" Selfsimilarity revisited

Self-similarity in the Koch curve
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Real world fractals

A cloud, a mountain, a flower, a tree
or a coastline...
The coastline of Britain
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iteration
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In nature — snow-flakes
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F;:i Another example: Cantor Set

The oldest, simplest, most famous fractal
1 We begin with the closed interval [0,1].
2 Now we remove the open interval (1/3,2/3);
leaving two closed intervals behind.
3 We repeat the procedure, removing
the "open middle third" of each
of these intervals
4  And continue infinitely.

Fractal dimension:
D=log2/log3=0.63...

Uncountable points, zero length EE EE
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Cantor square

Fractal dimension: d = log 4 /log 3 = 1.26
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mﬁgﬂ‘mctal geometic structures

o lterations
o IFS (affine transforms)
» Complex transforms (iterations)
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Sierpinski Fractals
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Sierpinski gasket/carpet
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Menger's sponge
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IFS (lterated Function Systems)

Here, (X,y) 1s a point on the image,
(r,s) tells you how to scale and reflect the image at the various points,

(theta,phi) tells you how to rotate,
(e,f) tells you how to translate the image.
Various Fractal Images are produced by differences in these values,

or by several different groups of values.
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IFS (continued)

Remember that matrix from the previous slide? Lets rewrite it as
a system of two equations :

X' = rcos(theta)x — ssin(phi)y + ¢
y' = rsin(theta)x + scos(phi)y + f

(x,y) being the pair we are transforming, and (x',y ") being the
point in the plane where the old (x,y) will be transformed to.

EVERY Transformation follow this pattern. So for file transmission, all
we need
to include would be the constants from above : r,s,theta,phi,e.f, x,y

This greatly simplifies the Task parsing.

On return you would only need to include the (x,y)->(x",y")
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Julia set

e Defined as boundary between bounded and unbounded

sequences in complex plane for the nonlinear maps
2"+ e (z,ce C, n usually 2).

Sets are either totally connected or disconnected (latter
called dust).

Manifest themselves in such contexts as familiar
Newton-Raphson algorithm for complex case — e.q.
23 —1=0:

Basin of attraction Basin boundaries.
for z = 1 solution.

Fractals - Maciej J. Ogorzatek




The Mandelbrot Set

The Mandelbrot set is a connected set of points in the complex
plane
Calculate: Z, =22+ 72, 2,=22+ 2, Z,=2,°+Z,

If the sequence Z,, Z,, Z,, Z,, ... remains within a distance of 2
of the origin forever, then the point Z, is said to be in.the
Mandelbrot set.

If the sequence diverges from the origin, then the point is notin
the set
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Most popular and complex object of contemporary
mathematics.

Constructed via simple recipe {c < C: c2 + ¢ /> oo}, called
prisoner set.

Zoom views of set:
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Colored Mandelbrot Set

The colors are added to the points that are
not inside the set. Then we just zoom in on it
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Are-organisms fractal?

M. Sernetz et al. (1985 paper in J. Theoretical Biology) £28
Contrary to common belief, metabolic rate is not proportional |. v

to body weight. Instead, it fits in a power law relationship. )
child,lung

.I I l = CWa log(metabolic rate)

.

tabolic rate Body weight [ e e e
Ig?ope o= 6.75

log(body mass)
Fractals™® -



Dimension of organisms

We can deduce the fractal dimension from o
= (0.75.

Suppose r is the scaling factor (like s). Since
weight is 13, the power law can be modified
to m = crd«,

Thus, D = 3a = 2.25.

— Would the dimension change when an
organ malfunctions?

— Is the dimension different for different
animals?
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ractals in biology
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mﬁroperties for applications:

o Finite area — infinite peri

o Self-similarity (same prope
different scales)
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Physical relations for capacitors

Both electrodes have a surface A (in m?) separated by
distance d (in m). The applied voltage AU (in Volt)
creates an electric field E = AU/d storing the electrical
energy. Capacitance C in Farad (F) and stored
energy J in Ws is:

where ¢ (e.g. 1 for vacuum or 81 for water) is the relative dielectric
constant which depends on the material placed between the two
electrodes and g, = 8.85-10-"2 F/m is a fundamental constant.
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Capacitance
in Farad

BT —

Example

supercapacitor with
15000 F, max. 2.5V
{positive electrode
letth

electrolyte capacitor
with 1000 mF, max
25 ¥ {positive

i electrode left)

elecirolyte capacivon
with 10k mF, manx,

35V (bent wire is
positive electrode)

el

riplled capacitor

with 51 nF, max, 65 %

plate capacitors
with 50 pF. Lefit: an
element froem an old
wacuum-iube radio
in the form of two
plates rolled Lo a
cylinder, ma. 450
V. Right: modern
ceramie alement,
e 100 V)

Energy Stored

Watt hiowes (Wh)

several Ws (Ws)

milli-Ws = 107 Ws
LmvaE)

milli-Ws = 107 Ws
{myv'a)

micre-Wse = |0 Wg

Applications

Mowvel applications
in power
elecironics: e, in
CArs, for n.'pl..'u'ing
batteries In

SO T
electronics

Poswer :-;u.p|:-|'.-' units

Low frequency
technology: general
eleciromics, e
audio amplifiers
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technology:
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How to create capacitors with larger C?

Create capacitors with very large areas A —
technologies to create fractal-type surfaces

Use designs taking advantage of lateral
capacitance in integrated circuits
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Paul Scherrer Institute in Villigen, Switzerland - Rudiger Kotz and his group have
developed an electrode in collaboration with the Swiss company Montena
(Maxwell).
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a) Micrograph of a cross section through a supercapacitor electrode.The white

stripe is a part of the 30 um thick metallic carrier-foil (total foil is 0.1 m wide, 2 m
long). On both sides carbon particles provide a complex fractal surface
responsible for the high capacity.The space taken by the green resin used to fix
the delicate carbon structure before cutting-and to provide a good contrast for
imaging is normally filled with the electrolyte (an organic solvent containing salt
ions).

b) Borderline of the cross section through the electrode surface in (a) to be
analyzed by the box-counting procedure, illustrated for a tiling with 128 squares:M
= 56 squares (filled with light blue colour) are necessary to.cover the
borderline.Their side lengths are N = 11.3 (square root of 128) times smaller than
the length scale of the whole picture.

c) The box-counting procedure is repeated with a computer program fordifferent
N.The average fractal dimension of the borderline is the gradient of the straight
line approximating the measured points in this Log(M) over Log(N) plot, giving

D 1.6.This same dimension was measured in the lengthinterval covering nearly 3
decades between 0.6 mm (length of micrograph in Figs 2a, b) and about 1 pm (fine
structure in Fig. 2d).

d) Carbon particles as seen with an electron microscope show roughness also in
the 1 um scale. It is assumed that the above indicated fractal dimension D holds
over the entire range of 8 decades between the macroscopic scale (i.e. the
geometric size of the order of 0.1 m) and the microscopic scale (i.e. the
micropores in the order of 1 nm = 1-10° m).The electrode surface is therefore
multiplied by 10806 or about 60’000 when compared to the normal two-
dimensional surface of 0.2 m?.
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e 800 F boostcap by montena SA utilizing PSI electrode.

e Capacitor module with 2 x 24 capacitors resulting in 60V , 60 F
with an overall internal resistance of < 20 mOhm.
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e Supercapacitor module for HY-LIGHT.
Capacitance: 29 F

Power: 30 - 45 kW for 20 - 15 sec ; Weight: 53 kg
o HY-LIGHT accelerates to 100km/h in 12 seconds
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valocity (km'h)

net power from fusl-cell
Bystem (kW)

200 400
driven distance
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Vertical vs. Lateral Flux

® | ateral flux increases the total amount of capacitance.
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Scaling

® Unlike conventional parallel-plate structures, the
capacitance per unit area increases as the process
technologies scale.

Fractals - Maciej J. Ogorzatek




Manhattan capacitor structures

|'_ Ty P . . . I
(d) OQuasi-Fractal
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Fractal Capacitor

® Quasi fractal geometries can be utilized to increase
capacitance per unit area.

3-D representation of a fractal capacitor using a single metal layer.
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Capacitance Estimation

D
K (JA)

X t
(w+s)P-1

c/a teral ~

® . Minimum width of the metal.
e s. Minimum spacing between two adjacent strips.

e A: Area of the fractal capacitance.

® [ Thickness of the metal layers.

® K: Proportionality factor that depends on the family of
fractals being used.

® D: Fractal dimension.
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Boost Factor vs. Lateral Spacing

20.0 pr—r—r——— v A

-=== D=1.8
—— D=1.6
Area=24000 pm?
Vertical metal spacing=0.8 um

Metal thickness=0.8 um " .
| -~ Fabricated

/ fractal
;-' -

1 06
Minimum horizontal spacing (um)

I
S
S
O
~
S
S
O
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» Quasi-fractal structures maximize periphery
to Increase field usage,
- Have strong vertical and lateral components,

» Time consuming to generate and simulate,
 Look beautiful !

[Samavati, Hajimiri, Shahani, Nasserbakht, and Lee, ISSCC 1998]
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Capacitance density comparison

% TL1
37.0%
Wowen no Vias ' 28.3%
Parallel Wires ' 28.3%
Quasi-Fractal ' 17.9%
Horizontal PP | 0.8%

O | Vertical PP | 49.6%
i — gféféjﬁi;g Vertical Bars | 63.7%
AT

I

[ Aparicio and Hajimiri, JSSC March 2002]
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Measurement Summary

S N
- f-‘faffa‘fé i |
-lq_i!.i_-!iﬁia

iﬂ liﬂ g
’li. 1L ’i

‘"i

HPP | VB VPP MIM 0.18p
Average Cap. [pF]  1.095 1.076 1.013 @ 1.057

Cap. Density [aF/um?] 203.6 1281.3 1512.2/ 1100
Cap. Enhancement 1 6.29 7.43 (
f o [GHZ] 21 3(.1 40 <

Q (Measured) @1GHz 63.8 @ 48.7 @ 83.2 95
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Antenna properties

Radiation pattern variation for a linear
antenna with changing frequency — antennas
are narrow-band devices!
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fractal antenna is an that uses a self-similar
design to maximize the length, or increase the
perimeter (on inside sections-or the outer structure), of
material that can receive or transmit electromagnetic
signals within a given total surface area. For this
reason, fractal antennas are very compact, are
multiband or wideband, and have useful applications
in and communications.
Fractal antenna response differs markedly from
traditional antenna designs, in that it 1s capable of
operating optimally at many different frequencies
simultaneously. Normally standard antennae have to
be "cut" for the frequency for which they are to be
used—and thus the standard antennae only optimally
work at that frequency. This makes the fractal antenna
an excellent design for applications.
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http://en.wikipedia.org/wiki/Antenna_%28electronics%29
http://en.wikipedia.org/wiki/Cellular_telephone
http://en.wikipedia.org/wiki/Microwave
http://en.wikipedia.org/wiki/Wideband

The first fractal antennas were arrays, and
not recognized initially as having self
similarity as their attribute.

are arrays, around since the 1950's
(invented by Isbell and DuHamel), that are
such fractal antennas. They are a common
form used in TV antennas, and are arrow-
head in shape. Antenna elements made from
self similar shapes were first done by Nathan
Cohen, a professor at Boston University, in
1988. Most allusions to fractal antennas
make reference to these 'fractal element
antennas’.
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http://en.wikipedia.org/wiki/Log-periodic_antenna
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WFEL  EZMEC 2.8 Log Periodic 208-1088, 288 obn B4-19-Z808  18:15:44
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Why Fractal Antennas ?

Hypothesis
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Which Fractals and Why?

Loops
Minimize Size
Increase Input Impedance

Dipoles
Minimize Heights
Increase Input Impedance

Dipoles

Multiband
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Small Fractal Loop Antennas

Main Benefit: Increased Input Impedance

Koch Loop vs. Circular Loop

Input Fesistance

Eoch Loop
Circle Loop

—
n
=

=
=
2
o
=

=
&
il
L
=
=}

15.0 16.0 17.0 18.0 19.0 20.0 210 220
Frequency (MHz)

" Both loops take up the same volume

But. the input impedance of the fractal loop is higher .m"'{Fractal
- Antennas
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Decreasing Height for Eesonant Dipoles

However, Total Length Increases

Fractals - Maciej J. Ogorzatek

Koch Monopole

Eiaigiks at Rascsancs warezs Isration

Fractal Immnoz
Koch Monopole
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Main Benefit: Decreased Resonant Frequency

Fractal Tree Monopole over Ground Plane

Fesonant Frequeney vs. Iteration

T 100

95 . .
Increasing Iteration

907 + Decreases Resonance

83 ¢

Resonant Frequency ((HZ)

2 3 4 ' « Fractal
Fractal Tteration Mummber A_]_]IE'II[]HS
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Main Benefit: Decreased Resonant Frequency

Iteration 0 Iteration 1 Iteration 2 Iteration 3 Tteration 4
3D Fractal Tree 3D Fractal Tres
Input Matchad to 30 ckms

Fesonant Frequancy varsns Fraczal Tteration

11 (4R}

— Iieration [
—— Iteration 1

Reson il Fredquency (OHz)

Lieration 1
—— Iterasion 3
Lieration 4

1
Setld
Frageaecy (Fx)

Inaratioz Kumbas —
<« Fractal
Antennas
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Sierpinski Sieve Dipole Antennas

Main Benefit: Multiband

511 matched to 50 chims

a5 pozpunad by Mathod of Memeames

The 3 bands matched by 3 different bowtie dipoles
Are matched by 1 sterpinski dipole

. |: i
Fragquancy (Ez)

A\

a® Fractal
Antennas
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Surface Currents Computed by Method of Moments

Surface Currents Clearly Show Multiband Behavior

Cwrent at First Resonance Reaches to the Top of Bowtie Antenna

Current Only Sees Properly Scaled Antenna at First, Second, and Third Rescnance

«m Fractal I
Antennas
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Fractal Square Loop Antennas

Main Benefit: Decreased Size

Decreased Antenna Width
Accompanies Increases in Iteration

For Second and Third Iteration

I
Indentation
W'ﬁdth

=
I [l

Far Field Pattemn

¥ Z Plane

Far Field Pattern
Remains Similar
even with
Smaller Area

«® Fractal
Antennas
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Fractal Square Loop Antenna Design Curves

The Antenna can be Fabricated for a Given Iteration

Whdth = r—,

@il
For a given indentation width,
resonant loops can be designed

using the above equation,
where ' is found empirically.

Width of Fesonant Sequare Loop

Ll snianon Waddh = 0.204)

Erdsnianen Waddh = 0,333

Esadzintan i Wadh = 0,204

Widdh fwasnlmzhel
| =}

n
[

Fraciul Hieratioe ) @J' . Fl‘a‘:tal
Antennas
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Arrays with Fractal Elements

Main Benefit: Decreases Mutual Coupling between Elements

Separation Distance can be Maximized Using Fractal Elements

Sepueation Diitince

Thin Feeding WNetwork for Fractal Array Elements

Ground Plane

Microstnip - CPS _ —
(Co-planar strip) | <59/ Fractal
Antennas
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John-Gianvittorio - UCLA

Fabricated Fractal Array Antennas

Decreased inter-element coupling for fixed spacing

Increased packing ability with smaller fractal elements

Fractal Array
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Fractal antenna design

e Sample fractal antenna elements:

(a) Koch dipole (b) Koch loop (c) Cantor slot patch  (d) Sierpinski dipole
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ITEM NO.:G5-205

Freguency. GPS 15T5MHz =3MHz
Band Widlh &5 MEZ

Impadance:. SDohmMS

SWl: 1.5

Gain; = 3dBi

Cabde: Ri-174

Freqguency: GSM BS0-080MH=
1T10-1990MHz

Impedance; 540 ohms

Wl =2

Gain: 2. 15dhi

Cable: RG-174

Froquency: 76-110MHZ{FM)
525-1TDOKHz{ AM)
Gain: «2{db{FK)
+50b{ AM)
Impedance: 75 ohmes
Cable: 3C-3V

Viodtage: 1 0=-14%

Cable length; 8°

Dia of installation hola: ©15mm
Fit Wi, GM, Auwdi, BWM, Peugeol

Fractals - Maciej J. Ogorzatek



Fractals - Maciej J. Ogorzatek



Fractal antennas have superior multiband
performance and are typically two-to-four times
smaller than traditional aerials.

Fractal antennas are the unique wideband enabler—
one antenna replaces many.

Multiband performance is at non-harmonic
frequencies, and at higher frequencies the FEA is
naturally broadband. Polarization and phasing of

FEASs also are possible. Fractal Antenna

Practical shrinkage of 2-4 times are realizable for
acceptable performance.

Smaller, but even better performance

Fractals - Maciej J. Ogorzatek
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Visualization of antenna (the brown
layer) integrated on a package
substrate

AiP integrated on Bluetooth® adapter

Fractals - Maciej J. Ogorzatek



Fractu

Julia-12 ISM 2.4 GHz VPol

P/N: FR03-02-N-0-002

Frequency Range
Directivity/Gain
Impedance
Polarisation

F/B Ratio

VSWR

Vertical Beamwith
Horizontal Beamwith
Connector (Pig Tail)
Radome
Dimensions

Patent Pending
EP

- 1=2.4(GHz), E-total, phi=0 (deg)
2.44(GHz), E-total, phi=0 {dag)

)
{GHz), E-total, phi=0 (deg)

0.0
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Fractus® Julia-10b ISM 2.4 GHz VPol P/N: FR03-02-N-0-003

Frequency Range
Directivity/Gain
Impedance
Polarisation

F/B Ratio

VSWR

Vertical Beamwith
Horizontal Beamwith
Conne ctor (Pig Tail)
Radome
Dimensions

T, § AL, i) el
e, L, gD bt
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Fractal Geofind™ GPS Slim Chip Antenna P/N: FR05-S1-E-0-103

Product Benefits

M High performance/price ratio

10 x 10 x 0.9 mm

Frequency Range
Efficiency

Peak Gain

VSWR

Weight
Temperature
Impedance
Dimensions

tain
@fractus.com R

dernark
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Fractus® Compact Reach Xtend™ Chip Antenna P/N: FR05-51-N-0-102

The Fractus Compact Reach Xtend Chip Antenna for Product Benefits

is a tiny rectan

M small form factor

7 X 3 X 2 MM (imags larger than actual

Optirmi
radia

M Multi-mode support

Bluetooth, and Wi-Fi 802.11b
Front

Frequency Range
Efficiency

Peak Gain

VSWR

Weight
Temperature
Impedance
Dimensions

Fractals - Maciej J. Ogorzatek



P/N: FR05-51-R-0-105

s EZConnect Zigbee Chip Antenna is a compact re  Product Benefits
> for sn rity rindu

M small form factor

ce limited

ractus EZConnect Zigbee Chip Antenna your M Broad bandwidth

. in L within | performar
mounting). p——

18 X 7,3 X 1 MM iimage larger than actual

Frequency Range
Efficiency

Peak Gain

VSWR

Weight
Temperature
Impedance
Dimensions

nm
DS_FR05-51-E-0-105_w01

FRALCTLS All gther tradema
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Chip Antenna 2. 4 & 5GHz
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FRACTAL ANTENNA

BEYS EMSE INI

UAB™ Antenna
Extremne wideband and omnidirectional pe
with or without a ground plane over a 25:1 frequency range,

form factor packaged in a 7.7 inch-diamet 0 inch-high radome weighing

UGS™ Antenna
nsor {UGS) providing
erates over high HF thro

radiation pattern an
uring 2.5

up to 25 MPH. G
transmit applications. New hanging or triped mounted versions available.
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Breakthrough performance in a wideband
antenna from the fractal antenna innovators

Fractal antenna technology, implemented in
transparent conductive film, makes covert capability
possible with a mission-capable antenna system
that operates over a huge frequency range.

VSWR |

Inherently 50 Ohms monitor enemy commu

- antenna nology.
Optional frequency =

lowering pz

Good Gain

Wideband

Compact Size Effective of small window apertures

Conformable

Fractals - Maciej J. Ogorzatek
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