Wireless Sensor Networks: A Real Melting Pot

Magdy A. Bayoumi Director, The center for Advanced Computer studies Dept. Head, Computer Science Dept. University of Louisiana at Lafayette

The Team

Sensors are the CORE for:

- Wearable Computers
- Embedded Computing
- Ubiquitous Computing
- Perception Systems
- They are the interface of the digital world to the real world

Hot News:

□ Wall Street Journal, Feb. 28, 2007:

"Monitoring your heart, wireless, via the Internet"

Implanted device (sensors) inside the heart; *the Chronicle* from Medtronic Inc. Send all information wireless to the network.

Wireless Sensors Networs:

- Evolution in Computer Architectures
 Advances in Communication Networks
 Modern Circuit Design
 Advances in Devices
- New Design Paradigms

Technology is everywhere

Source: Intel

4

Growth of cellular market

Wireless World

Examples – Research Groups

- U. of California Berkeley
- UCLA
- Cornell
- USC
- U. of Louisiana

Blurring the boundary between the digital and physical worlds

As these devices proliferate, we must -Deal with uncertainties in both systems and environments -Move from "building unreliable systems from reliable parts" to "building reliable systems from unreliable parts"

Why Wireless Network?

- Wireless is now cheaper to install, it will be 10% of the cost of the wired system by 2010.
- Rapid deployment.
- Wire crack or fail->high maintenance.
- Flexibility in placement.
- Connectors are expensive and not reliable.

What is Wireless Sensor Network

Network that are formed when a set of small untied sensor devices that are deployed in an ad hoc fashion cooperate on sensing a physical

phenomenon

Characteristics

- Sensor network protocols and algorithm must posses selforganizing capabilities.
- Cooperative effort.
- The sensor must carry out simple computations and transmit only the required and partially processed data.
- The number of sensors can be a several orders of magnitude higher than the nodes in an ad hoc network.
- Sensors are densely deployed (20 nodes/m³).

Characteristics *continued*...

The communication is not end-to-end. The function of the network is to report the phenomenon of interest to the observer who is not necessarily interested in (or aware of) specific sensors as another end-point of communication

Energy is much more limited in sensor networks than in other wireless network since it is often impossible to recharge the batteries of sensor nodes

Six Aspects of a Sensor Network Arch.

- Design Principles
 - Guidelines and constraints, what functionality, what state
 - To what are we agnostic
- Functional Architecture
 - Logical building blocks/protocols, interfaces, interconnections, interdependencies
- Programming Architecture
 - API/ISA what logical data types and operations are expressible
- Protocol Architecture
 - Distributed algorithms to provide each component service, defn. of the information exchanged between instances
 - Most existing work is of this form
- System Support Architecture
 - Capabilities of the node to support the network arch.
- Physical Architecture
 - Set of nodes, interconnects, communication fabrics upon which network is constructed

Sensor Networks Requirements (as outlined by NIST)

Large number of sensors (stationary or Mobile) : Scalability is a major issue.

Low energy use :

The lifetime of a node may be determined by the battery life.

Network self-organization: *Hostile location; fault-tolerance.*

Collaborative signal processing: The end goal is detection /estimation of some events of interest and not just communications.

Queering ability:

Individual nodes may be queried.

Sensor Node

- The sensor node is made up of four basic components:
 - Sensing Unit
 - Processing Unit
 - Transceiver Unit
 - Power Unit

Sensor Node *continued...*

- The sensor node must :
 - Consume extremely low power.
 - Handle its own power.
 - Low Production cost.
 - Be dispensable and autonomous.
 - Operated unattended.
 - Be adaptive to the environment.

Berkeley Motes

- Small (under 1" square) microcontroller
- □ It consists of:
 - Microprocessor
 - A set of sensors for temperature, light, acceleration and motion
 - A low power radio for communicating with other motes
- C compiler Inclusion
- Development ongoing

Issues governing a Sensor node Design

- Reduction of power consumption of each component in the sensor node and the network as a whole.
- Nodes must be able to perform a combination of computation, wireless communications and sensing.
- Nodes also contain a conventional battery, (preferably rechargeable) supplemented by a renewable source that generates power using scavenging techniques (vibration, solar, EM, piezoelectric, radioactive, etc..)
- Reduction of communication and communication associated energy consumption. A prudent Metric in a sufficiently dense network is the communication energy per node.

Disadvantages of current sensor network platforms

- Reliance on COTS microcontrollers that are not optimized for running eventdriven applications that are mostly idle.
- Necessity of running a software layer to provide event-handling abstractions that introduces significant software overhead.
- Example : TinyOS (or similar OS) running on top of ATMEL(ATMega128), TI(MSP430) or INTEL (ARM based) microcontrollers.

Sensor Data Aggregation Processor

- First Prototype at CACS of a Processor which performs the class of computations for wireless Sensor networks called *data-aggregation*.
- Aggregation applications are those where the desired answer depends on the sensed value at multiple nodes.
- Examples of aggregation functions are "maximum" and "average". A user may he interested in knowing the max (or average) of a value in the WSN or in some restricted area of the WSN.
- The Processor performs "snapshot aggregation" (If the function needs to he performed once) and "periodic aggregation" (user needs an update in periodic intervals).
- Built on AMI 0.5um process. Can serially process Sensor data at a Maximum rate of 50 Mbps. Average power consumption at 50Mbps is 300mW.

Sensor Network Design Factors

1. Sensor mobility:

Fixed; movable planned/known; random motion.

 Number of sensors in the application domain & scalability required : 1 to 10; 10 to 1000; 1000 to 100000; 100000+.

3. Power source & life :

Wired; wireless on pre-existing; wireless separate supply.

4. Security :

High; low; encryption.

Sensor Network Design Factors *continued...*

5. Sensor intelligence :

Single or multi-function; dumb; addressable- 2 way, multi-path, broadcast.

6. Actuation processes :

Tightly coupled or separate actuator; auto or manual trigger Local, intermediate or NOC decision point.

7. Intelligence & information distribution schema : All to central NOC or distributed |intelligence at remote sites; secure vs. non-secure sites; level of remote data storage.

8. Level of fusion & collaboration :

Multi sensor or multi node direct communication; query capability from sensor site, other in field, NOC.

Sensor Network Design Factors *continued...*

9. "Hop" constraints :

Internodes; to actuation; to NOC.

10. Ranges allowable & optimal : Internodes; to router or node sink; to secure site.

11. Communication medium :

Wired; wireless entirety; wired to router/node sink then wireless; multi mode

Factors affecting wireless sensor network.

- Data reliability.
- □ Battery life.
- Cost.
- □ Transmission range.
- Data rate.
- Data latency.
- □ Physical size.
- Data security.

Ubiquitous Computing and Monitoring System (UCoMS) for Discovery and Management of Energy Resources

Project Aims

- Drilling and production data logging and storage to expand seismic databases using wireless network systems
- Massive grid computing power to support reservoir development optimization and seismic simulation
- Safety monitoring of well platforms & transport pipes
- Support of long-term platforms monitoring
- Use of decommissioned platforms as experimental testbed

Medium Access	SYN-MAC	Unique Features
 Problem: Congestion High collision Low throughout 	• Proliminary Recult	 High efficiency Simplicity Robustness QoS support Fairness Decentralization Proposed Work Protocol design
	(seque) trade of the second se	 Inplementation QoS support Eval. & fine- tune Prototyping

Reliable Transport	Approach: Cross- layer Based TCP	Unique Features
	• <u>Use Cross-layer</u>	
• <u>Problem</u> : – Distinguish causes of packet errors	<u>Model</u> – Link quality – Congestion – Path stability	 Flexible Adaptive Dynamic channel and path metrics
• Objective:	• Control TCP data rate	Proposed Work
– Improve TCP throughput	•TCP response to packet loss	 Distributed feedback control mechanisms Implementation Evaluation Comparison Prototyping

Energy Efficiency and System Optimization

Proposed Work: Modeling and Protocol Design

<u>Problem</u>: cross-layer parameter and protocol interaction hinders performance
<u>Objective</u>: improve energy efficiency, system lifetime.

Simulation results: 4-way interaction plot

- Empirical data collection.
- Derive multiple factor empirical models.
- Development cross-layer architecture and protocols to minimize power consumption and increase system lifetime.