The Design of High Speed Low Power Digital FIR Filters Based on Frequency-Response Masking Technique

Dr. Yong Lian
Dept. of Electrical and Computer Engineering
National University of Singapore
Email: eleliany@nus.edu.sg

Outline

• A brief introduction to digital filters
• How to achieve high-speed with less power
• The frequency-response masking technique
• Conclusion
Digital Filters

• What is the digital filter?

• Two types of filters – Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters.

Advantages and Disadvantages

• Advantages :
 – IIR: computationally efficient.

• Disadvantages :
 – FIR: requires high-order transfer function compared with IIR filters.
 – IIR: sensitive to finite-length arithmetic, harder to implement using fixed-point arithmetic.
Why FIR?

- Waveform distortion caused by phase.
- Filtering of Electrocardiogram Signal (ECG)

Applications

- Analog-to-digital converter.
- High quality digital audio system.
- Digital TV, HDTV.
- Wireless Communication.
- Medical instruments.
- Frequency spectrum analysis.
The FIR Filter

\[y(n) = h(0)x(n) + h(1)x(n-1) + \cdots + h(6)x(n-6) \]

Complexity of the FIR Filter (1)

- Complexity is related to the implementation cost.
- Multipliers, adders, and delays (registers).
- Filter length.
- Filter specifications: passband(s), stopband(s), passband and stopband ripples.
Achieving High-Speed with Less Power

- **High-speed**
 - Reduce the filter length, i.e. the number of coefficients.
 - Reduce coefficient word-length.
 - Remove the multipliers if possible.

- **Low-power**
 - Reduce the filter length.
 - Lower the coefficient sensitivity.
 - Use simple multipliers.
Computationally Efficient Filter Design Techniques

• Prefilter-Equalizer
 – Mainly for narrowband filters
• Interpolated Finite Impulse Response (IFIR)
 – For narrowband filters
• Frequency-Response Masking (FRM)
 – For arbitrary bandwidth narrow transition width filters

Frequency-Response Masking Technique

• It is a filter structure that realizes arbitrary bandwidth sharp FIR filter specifications.
• Basic structure of an FRM filter.

\[F_a(z^M) \quad F_{Ma}(z) \]
\[F_c(z^M) \quad F_{Mc}(z) \]
The FRM Technique (continued)

- A complementary band-edge shaping filter pair.

![Diagram of FRM Technique]

Implementation of Complementary Filter Pair

![Diagram of Filter Implementation]
Frequency Responses of Subfilters

IEEE CAS Workshop, 2 March 2007, Vancouver
Implementation of FRM Filter

$F_a(z)$ is an odd length filter. $F_{Ma}(z)$ and $F_{Mc}(z)$ must produce equal phase shift. If they do not, leading delays should be added to equalize their phase shifts.

$F_a(z^M)$ and $F_{Ma}(z)$ are implemented as:

$\frac{(N-1)M}{z^2}$
Frequency Response of an FRM Filter

Design Equations for Case A

For $\mathcal{F}_{\delta}(z)$:

\[
\begin{align*}
\omega_p &= \frac{2m\pi + \theta}{M} \\
\omega_s &= \frac{2m\pi + \phi}{M}
\end{align*}
\]

\[
\begin{align*}
m &= \left\lfloor \frac{\omega_p M}{2\pi} \right\rfloor \\
\theta &= \omega_p M - 2m\pi \\
\phi &= \omega_s M - 2m\pi
\end{align*}
\]

where $\lfloor x \rfloor$ denotes the largest integer less than x; ω_p and ω_s are the passband and stopband edges of overall filter, respectively.
Design Equations for $F_{Ma}(z)$ and $F_{Mc}(z)$

- For $F_{Ma}(z)$:
 \[
 \omega_{Ma,p} = \omega_p \\
 \omega_{Ma,s} = \frac{2(m+1)\pi - \phi}{M}
 \]

- For $F_{Mc}(z)$:
 \[
 \omega_{Mc,p} = \frac{2m\pi - \theta}{M} \\
 \omega_{Mc,s} = \omega_s
 \]

Design Equations for Case B

For $F_{d}(z)$:

\[
\begin{align*}
\omega_p &= \frac{2m\pi - \phi}{M} \\
\omega_s &= \frac{2m\pi - \theta}{M}
\end{align*}
\]

\[
\begin{align*}
m &= \left\lfloor \frac{\omega_s M}{(2\pi)} \right\rfloor \\
\theta &= 2m\pi - \omega_s M \\
\phi &= 2m\pi - \omega_p M \\
0 &< \theta < \phi < \pi
\end{align*}
\]

where $\lfloor x \rfloor$ denotes the smallest integer larger than x; ω_p and ω_s are the passband edge and stopband edge, respectively.
Design Equations for $F_{Ma}(z)$ and $F_{Mc}(z)$

- For $F_{Ma}(z)$:
 \[\omega_{Ma,p} = \frac{2(m-1)\pi + \phi}{M} \]
 \[\omega_{Ma,s} = \omega_s \]

- For $F_{Mc}(z)$:
 \[\omega_{Mc,p} = \omega_p \]
 \[\omega_{Mc,s} = \frac{2m\pi + \theta}{M} \]

Transition Width of Masking Filters

- The sum of the transition widths of two masking filters equals to $1/M$.

 The transition width of $F_{Ma}(z)$: $\Delta \omega_{F_{Ma}} = \frac{2\pi - \theta - \phi}{M}$

 The transition width of $F_{Mc}(z)$: $\Delta \omega_{F_{Mc}} = \frac{\theta + \phi}{M}$

 \[\therefore \Delta \omega_{F_{Ma}} + \Delta \omega_{F_{Mc}} = \frac{2\pi}{M} \]
The Complexity of Overall Filter

- The complexity of overall filter is the total number of multipliers needed by three subfilters,

\[
L_{\text{Total}} = L_a + L_{Ma} + L_{Mc} = \frac{L_0}{M} + \frac{\phi(\delta_p, \delta_s)}{2\pi M - \gamma} + \frac{\phi(\delta_p, \delta_s)}{\gamma}
\]

- There is no closed-form solution for the above

Complexity of the FRM Filters

- The total number of multipliers \(L \) is given by

\[
L = L_a + L_{Ma} + L_{Mc} \approx \left(\frac{1}{M} + 4M \beta \right)L_0
\]

- The near optimal interpolation factor can be obtained:

\[
M_{\text{opt}} \approx \frac{1}{2\sqrt{\beta}}
\]

- The minimum complexity is:

\[
L_{\min} \approx 4\sqrt{\beta}L_0
\]

The FRM is only effective if the normalized transition bandwidth is less than 0.063.
An Example

- Design an FIR lowpass filter
 Normalized passband edge: 0.3
 Normalized stopband edge: 0.305
 Maximum passband deviation: 0.01
 Minimum stopband attenuation: 40 dB
- The estimated length of the minimax design is 383, i.e. 192 multipliers.
- The lengths of filters in an FRM design are 45, 38, and 30, respectively, i.e. 57 multipliers. A 70% savings in terms of the number of multipliers compared to the minimax design.

Frequency Response of the Overall Filter
Passband Ripple

Two Masking Filters
Multi-Stage FRM

- A two-stage FRM structure

The Frequency Responses of the Various Subfilters in a Two-stage FRM
An Example of a 2-Stage Design

List of Coefficients

<table>
<thead>
<tr>
<th>$h_a(0)$</th>
<th>$= 2^{-4}+2^{-9}$</th>
<th>$= h_a(416)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_a(16)$</td>
<td>$= 2^{-7}+2^{-9}$</td>
<td>$= h_a(400)$</td>
</tr>
<tr>
<td>$h_a(32)$</td>
<td>$= 2^{-6}$</td>
<td>$= h_a(384)$</td>
</tr>
<tr>
<td>$h_a(48)$</td>
<td>$= 2^{-6}+2^{-9}$</td>
<td>$= h_a(368)$</td>
</tr>
<tr>
<td>$h_a(64)$</td>
<td>$= 2^{-7}+2^{-8}$</td>
<td>$= h_a(352)$</td>
</tr>
<tr>
<td>$h_a(80)$</td>
<td>$= 2^{-5}+2^{-8}$</td>
<td>$= h_a(336)$</td>
</tr>
<tr>
<td>$h_a(96)$</td>
<td>$= 2^{-5}+2^{-10}$</td>
<td>$= h_a(320)$</td>
</tr>
<tr>
<td>$h_a(112)$</td>
<td>$= 2^{-6}+2^{-9}$</td>
<td>$= h_a(304)$</td>
</tr>
<tr>
<td>$h_a(128)$</td>
<td>$= 2^{-4}+2^{-6}$</td>
<td>$= h_a(288)$</td>
</tr>
<tr>
<td>$h_a(144)$</td>
<td>$= 2^{-4}+2^{-7}$</td>
<td>$= h_a(272)$</td>
</tr>
<tr>
<td>$h_a(160)$</td>
<td>$= 2^{-4}+2^{-8}$</td>
<td>$= h_a(256)$</td>
</tr>
<tr>
<td>$h_a(176)$</td>
<td>$= 2^{-3}+2^{-4}$</td>
<td>$= h_a(240)$</td>
</tr>
<tr>
<td>$h_a(192)$</td>
<td>$= 2^{-2}+2^{-3}$</td>
<td>$= h_a(224)$</td>
</tr>
<tr>
<td>$h_a(208)$</td>
<td>$= 2^{-1}+2^{-4}$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$h_{xa}(0)$</th>
<th>$= 2^{-6}$</th>
<th>$= h_{xa}(48)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_{xa}(4)$</td>
<td>$= 2^{-5}+2^{-8}$</td>
<td>$= h_{xa}(44)$</td>
</tr>
<tr>
<td>$h_{xa}(8)$</td>
<td>$= 2^{-7}$</td>
<td>$= h_{xa}(40)$</td>
</tr>
<tr>
<td>$h_{xa}(12)$</td>
<td>$= 2^{-5}+2^{-6}$</td>
<td>$= h_{xa}(36)$</td>
</tr>
<tr>
<td>$h_{xa}(16)$</td>
<td>$= 2^{-3}+2^{-6}$</td>
<td>$= h_{xa}(32)$</td>
</tr>
<tr>
<td>$h_{xa}(20)$</td>
<td>$= 2^{-2}+2^{-6}$</td>
<td>$= h_{xa}(28)$</td>
</tr>
<tr>
<td>$h_{xa}(24)$</td>
<td>$= 2^{-3}+2^{-6}$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$h_{Ma}(0)$</th>
<th>$= 2^{-8}+2^{-9}$</th>
<th>$= h_{Ma}(14)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_{Ma}(1)$</td>
<td>$= 2^{-6}+2^{-9}$</td>
<td>$= h_{Ma}(13)$</td>
</tr>
<tr>
<td>$h_{Ma}(2)$</td>
<td>$= 2^{-6}+2^{-8}$</td>
<td>$= h_{Ma}(12)$</td>
</tr>
<tr>
<td>$h_{Ma}(3)$</td>
<td>$= 2^{-8}+2^{-10}$</td>
<td>$= h_{Ma}(11)$</td>
</tr>
<tr>
<td>$h_{Ma}(4)$</td>
<td>$= 2^{-5}+2^{-6}$</td>
<td>$= h_{Ma}(10)$</td>
</tr>
<tr>
<td>$h_{Ma}(5)$</td>
<td>$= 2^{-3}+2^{-9}$</td>
<td>$= h_{Ma}(9)$</td>
</tr>
<tr>
<td>$h_{Ma}(6)$</td>
<td>$= 2^{-3}+2^{-4}$</td>
<td>$= h_{Ma}(8)$</td>
</tr>
<tr>
<td>$h_{Ma}(7)$</td>
<td>$= 2^{-4}+2^{-3}$</td>
<td></td>
</tr>
</tbody>
</table>
List of Coefficients

<table>
<thead>
<tr>
<th>$h_{hc}(0)$</th>
<th>$= 2^{-0}$</th>
<th>$h_{hc}(104)$</th>
<th>$= 2^{+0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_{hc}(4)$</td>
<td>$= 2^{-7} \cdot 2^{-10}$</td>
<td>$h_{hc}(100)$</td>
<td>$= 2^{-7} \cdot 2^{-10}$</td>
</tr>
<tr>
<td>$h_{hc}(8)$</td>
<td>$= 2^{-8} \cdot 2^{-9}$</td>
<td>$h_{hc}(96)$</td>
<td>$= 2^{-8} \cdot 2^{-9}$</td>
</tr>
<tr>
<td>$h_{hc}(12)$</td>
<td>$= 2^{-8} \cdot 2^{-9}$</td>
<td>$h_{hc}(92)$</td>
<td>$= 2^{-8} \cdot 2^{-9}$</td>
</tr>
<tr>
<td>$h_{hc}(16)$</td>
<td>$= 2^{-7} \cdot 2^{-9}$</td>
<td>$h_{hc}(88)$</td>
<td>$= 2^{-7} \cdot 2^{-9}$</td>
</tr>
<tr>
<td>$h_{hc}(20)$</td>
<td>$= 2^{-4} \cdot 2^{-9}$</td>
<td>$h_{hc}(84)$</td>
<td>$= 2^{-4} \cdot 2^{-9}$</td>
</tr>
<tr>
<td>$h_{hc}(24)$</td>
<td>$= 2^{-6} \cdot 2^{-7}$</td>
<td>$h_{hc}(80)$</td>
<td>$= 2^{-6} \cdot 2^{-7}$</td>
</tr>
<tr>
<td>$h_{hc}(28)$</td>
<td>$= 2^{-7} \cdot 2^{-8}$</td>
<td>$h_{hc}(76)$</td>
<td>$= 2^{-7} \cdot 2^{-8}$</td>
</tr>
<tr>
<td>$h_{hc}(32)$</td>
<td>$= 2^{-5} \cdot 2^{-7}$</td>
<td>$h_{hc}(72)$</td>
<td>$= 2^{-5} \cdot 2^{-7}$</td>
</tr>
<tr>
<td>$h_{hc}(36)$</td>
<td>$= 2^{-6} \cdot 2^{-10}$</td>
<td>$h_{hc}(68)$</td>
<td>$= 2^{-6} \cdot 2^{-10}$</td>
</tr>
<tr>
<td>$h_{hc}(40)$</td>
<td>$= 2^{-4} \cdot 2^{-6}$</td>
<td>$h_{hc}(64)$</td>
<td>$= 2^{-4} \cdot 2^{-6}$</td>
</tr>
<tr>
<td>$h_{hc}(44)$</td>
<td>$= 2^{-7} \cdot 2^{-8}$</td>
<td>$h_{hc}(60)$</td>
<td>$= 2^{-7} \cdot 2^{-8}$</td>
</tr>
<tr>
<td>$h_{hc}(48)$</td>
<td>$= 2^{-2} \cdot 2^{-8}$</td>
<td>$h_{hc}(56)$</td>
<td>$= 2^{-2} \cdot 2^{-8}$</td>
</tr>
<tr>
<td>$h_{hc}(52)$</td>
<td>$= 2^{-2} \cdot 2^{-3}$</td>
<td>$h_{hc}(52)$</td>
<td>$= 2^{-2} \cdot 2^{-3}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$h_{hc}(0)$</th>
<th>$= 2^{-8}$</th>
<th>$h_{hc}(22)$</th>
<th>$= 2^{-8}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_{hc}(1)$</td>
<td>$= 2^{-8}$</td>
<td>$h_{hc}(21)$</td>
<td>$= 2^{-8}$</td>
</tr>
<tr>
<td>$h_{hc}(2)$</td>
<td>$= 2^{-7} \cdot 2^{-8}$</td>
<td>$h_{hc}(20)$</td>
<td>$= 2^{-7} \cdot 2^{-8}$</td>
</tr>
<tr>
<td>$h_{hc}(3)$</td>
<td>$= 2^{-8}$</td>
<td>$h_{hc}(19)$</td>
<td>$= 2^{-8}$</td>
</tr>
<tr>
<td>$h_{hc}(4)$</td>
<td>$= 2^{-6} \cdot 2^{-7}$</td>
<td>$h_{hc}(18)$</td>
<td>$= 2^{-6} \cdot 2^{-7}$</td>
</tr>
<tr>
<td>$h_{hc}(5)$</td>
<td>$= 2^{-7}$</td>
<td>$h_{hc}(17)$</td>
<td>$= 2^{-7}$</td>
</tr>
<tr>
<td>$h_{hc}(6)$</td>
<td>$= 2^{-5} \cdot 2^{-6}$</td>
<td>$h_{hc}(16)$</td>
<td>$= 2^{-5} \cdot 2^{-6}$</td>
</tr>
<tr>
<td>$h_{hc}(7)$</td>
<td>$= 2^{-7}$</td>
<td>$h_{hc}(15)$</td>
<td>$= 2^{-7}$</td>
</tr>
<tr>
<td>$h_{hc}(8)$</td>
<td>$= 2^{-4} \cdot 2^{-5}$</td>
<td>$h_{hc}(14)$</td>
<td>$= 2^{-4} \cdot 2^{-5}$</td>
</tr>
<tr>
<td>$h_{hc}(9)$</td>
<td>$= 2^{-7} \cdot 2^{-8}$</td>
<td>$h_{hc}(13)$</td>
<td>$= 2^{-7} \cdot 2^{-8}$</td>
</tr>
<tr>
<td>$h_{hc}(10)$</td>
<td>$= 2^{-2} \cdot 2^{-4}$</td>
<td>$h_{hc}(12)$</td>
<td>$= 2^{-2} \cdot 2^{-4}$</td>
</tr>
<tr>
<td>$h_{hc}(11)$</td>
<td>$= 2^{-1} \cdot 2^{-8}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Passband Ripple

![The Passband Ripple Graph](image-url)
The Frequency Response of the Overall Filter

A Three-Stage Structure

\[
\begin{align*}
H_1^2(z) & \quad H_1^3(z) \\
H_1^1(z) & \quad H_2^1(z) \\
z^{-1} & \quad H_2^2(z) \\
z^{-1} & \quad H_3^2(z) \\
z^{-1} & \quad H_3^3(z) \\
H_0^0(z) & \quad H_0^3(z) \\
H_0^1(z) & \quad H_0^2(z)
\end{align*}
\]
Other Multi-Stage Structure

Input $H_a(z^M)$ $H_{na}(z^N)$ $H_{Mab}(z)$ $H_{Mac}(z)$ $H_{Mc}(z)$ $H_{Mcc}(z)$ $H_{cc}(z^L)$ $H_{Mca}(z)$ $H_{M}(z)$

Conclusion

• Frequency-response masking technique provides a cost efficient way for the design of high-speed low-power FIR digital filters.
• FRM significantly reduces the number of coefficients \rightarrow low-power and high-speed.
• The savings in terms of number of multipliers increase with the decrease of transition bandwidth.
• FRM filters have low coefficient sensitivity and its coefficients are easy to quantize into powers-of-two terms.
• FRM filters require less number of bits \rightarrow further reduction in power consumption.
References

